Seismic Magnitudes, Corner Frequencies, and Microseismicity: Using Ambient Noise to Correct for High-Frequency Attenuation

Author:

Butcher Antony1,Luckett Richard2,Kendall J.-Michael34,Baptie Brian2

Affiliation:

1. University of Bristol, School of Earth Sciences, Wills Memorial Building, Bristol, United Kingdom

2. British Geological Survey, Earthquake Seismology, The Lyell Centre, Edinburgh, United Kingdom

3. Formerly at University of Bristol, School of Earth Sciences, Wills Memorial Building, Bristol, United Kingdom

4. Now at University of Oxford, Department of Earth Sciences, Oxford, United Kingdom

Abstract

ABSTRACT Over recent years, a greater importance has been attached to low-magnitude events, with increasing use of the subsurface for industrial activities such as hydraulic fracturing and enhanced geothermal schemes. Magnitude distributions and earthquake source properties are critical inputs when managing the associated seismic risk of these activities, yet inconsistencies and discrepancies are commonly observed with microseismic activity (M<2). This, in part, is due to their impulse response being controlled by the medium, as opposed to the source. Here, an approach for estimating the high-frequency amplitude decay parameter from the spectral decay of ambient seismic noise (κ0_noise) is developed. The estimate does not require a pre-existing seismic catalog and is independent of the source properties, so avoids some of the main limitations of earthquake-based methods. We then incorporate κ0_noise into the Brune (1970) source model and calculate source properties and magnitude relationships for coal-mining-related microseismic events, recorded near New Ollerton, United Kingdom. This generates rupture radii ranging approximately between 10 and 100 m, which agrees with the findings of Verdon et al. (2018), and results in stress-drop values between 0.1 and 10 MPa. Calculating these properties without κ0_noise produces much higher rupture radii of between 100 and 500 m and significantly lower stress drops (∼1×10−2  MPa). Finally, we find that the combined κ0-Brune model parameterized with these source property estimates accurately capture the ML–Mw relationship at New Ollerton, and that stress drop heavily influences the gradient of this relationship.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3