Affiliation:
1. Seismological Laboratory California Institute of Technology Pasadena, California 91125
2. Department of Geological Sciences University of South Carolina Columbia, South Carolina 29208
Abstract
Abstract
We investigate lateral variations in crustal structure across the northern boundary of the Tibetan Plateau using the receiver functions at three broadband stations deployed during the 1991-1992 Tibet PASSCAL experiment. The first 5 sec of the receiver functions vary systematically with backazimuth: the radial receiver functions are symmetric across the N-S axis while the tangential receiver functions are antisymmetric across this axis. This symmetry can be modeled by E-W striking dipping interfaces in the upper-middle crust. The strike direction is consistent with the E-W trend of surface geology. Modeling a P-to-S converted phase in the receiver functions at each station suggests that there is a mid-crustal low-velocity layer with its upper boundary dipping 20° to 30° to the south. In addition, a shallow northward-dipping interface is responsible for the “double-peaked” direct P arrivals in the radial receiver functions and large tangential motions at one of the stations. The low-velocity layer, together with other geological and seismological observations, suggests that there is a hot, possibly partial melt zone in the middle crust of northern Tibet. Alternately, dipping velocity interfaces might be associated with some buried thrust faults in the upper crust that accommodated crust shortening during the plateau formation.
Publisher
Seismological Society of America (SSA)
Subject
Geochemistry and Petrology,Geophysics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献