Selected Strong and Weak-Motion Data From the Loma Prieta Earthquake Sequence

Author:

Jarpe S. P.1,Hutchings L. J.2,Hauk T. F.1,Shakal A. F.3

Affiliation:

1. Lawrence Livermore National Laboratory, Livermore, CA 94550

2. Bechtel Corporation, San Francisco, CA 94119

3. California Division of Mines and Geology, Sacramento, CA 95814

Abstract

Abstract The purpose of this paper is to document the strong- and weak-motion seismic data from the Loma Prieta earthquake and its aftershocks obtained by Lawrence Livermore National Laboratory (LLNL), and to present some analysis of the spectral seismic response using both weak- and strong-motion recordings. LLNL operates six free-field, digitally recorded, triaxial, strongmotion accelerographs in the vicinity of LLNL; five of these were operating during the Loma Prieta earthquake. Two days after the main event, LLNL initiated a field deployment of 3-component weak-motion instruments to record aftershocks at three LLNL sites and four California Strong Motion Instrumentation Program (CSMIP) sites that recorded strong-motion from the main event. Spectral ratios of strong- and weak-motion recordings are computed for two pairs of rock and soil sites. One pair of stations is in the vicinity of LLNL, and the other pair is Treasure Island TRI (fill) and Yerba Buena Island YBI (rock) in San Francisco Bay near the Bay Bridge. For the first pair, the weak-motion spectral ratios predict the strong-motion amplification, within 95% confidence limits, for frequencies from 3 to 12 Hz. For TRI and YBI, the strong-motion spectral ratio is much lower than the weak-motion 95% confidence region for frequencies from 1 to 7 Hz. The strong-motion ratio, however, still suggests that the soil underlying TRI resulted in a factor of 3 amplification of energy between 1 and 4 Hz. This is in contrast to the factor of 8 amplification of the weak-motion energy, derived from the spectral ratios of 7 Loma Prieta aftershocks. The large difference between the weak-motion and strong-motion spectral ratios reinforces the limitation that weak-motion cannot be used to directly predict strong-motion amplification at sites underlain by soils that may respond non-linearly at high strain levels. A further examination of weak-motion recordings indicates that the source effect can be removed and the propagation path effects approximated so that the site response can be isolated. Resulting site specific spectral amplifications reveal that the spectral ratio method can lead to erroneous conclusions if the “rock” site has a complicated geology. At two sites near LLNL the apparent diminishing of spectral amplitudes below 5 Hz observed in the spectral ratios was actually due to amplification of spectral response at the rock site. It appears that the reference site spectral ratios at low frequencies may have been influenced by topography or near-surface geologic features. For the other pair of sites, the spectrum at YBI, the rock site, was flat, so that the features in the spectral ratios are due to the seismic response of the soil at TRI.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3