Strong-Motion Accelerograms of the Oroville, California, aftershocks: Data processing and the aftershock of 0350 August 6, 1975

Author:

Fletcher Jon B.1,Brady A. Gerald1,Hanks Thomas C.1

Affiliation:

1. US Geological Survey 345 Middlefield Road Menlo Park, California 94025

Abstract

abstract The Oroville aftershock accelerograms are characterized by short durations (≲2 sec) of strong ground motion, small S-wave minus trigger times (≲2 sec), and an enrichment in frequencies above 1 Hz, as might be expected for 3 ≲ M ≲5 earthquakes recorded at close distances (R ≲ 15 km). These characteristics introduce significant error into the velocity and displacement traces calculated according to the routine procedures used in the series “Strong Motion Earthquake Accelerograms.” These errors are markedly reduced by removing all decimation in the processing scheme and by constructing a smoother response for the Ormsby high-pass filter. The result is an accurate set of velocity and displacement traces that can be used in a wide variety of source-mechanism and ground-motion studies. These revised processing procedures are applied to the ten strong-motion accelerograms of one of the largest aftershocks (0350 August 6, 1975; ML = 4.7) to illustrate the quality of data available for 12 such well-recorded aftershocks and to estimate the source properties of this particular earthquake. All of the accelerographs triggered on the P wave, allowing the recovery of the complete S wave on ten accelerograms. Offsets in displacement across the S wave and a ramp-like signature leading up to the S wave identified on the displacement traces are apparently near-field source effects. The seismic moment and stress drop determined for this normal faulting event are 4.0 × 1023 dyne-cm, and 410 bars, respectively. The seismic moment and stress drop are determined by averaging individual measurements at 9 and 8 stations, respectively, and are well-constrained with standard deviations that are about 25 per cent of the mean.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3