The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves

Author:

Bard Pierre-Yves1,Bouchon Michel1

Affiliation:

1. Laboratoire de Géophysique Interne, Associé au C.N.R.S. (ERA 603) I.R.I.G.M. Université Scientifique et Médicale de Grenoble B.P. 53 X 38041 Grenoble Cedex France

Abstract

abstract We present the extension to incident P and SV waves of our previous study (Bard and Bouchon, 1980) concerning the seismic response of sediment-filled bidimensional valleys to incident SH transient signals. The reliability of the Aki-Larner method is briefly discussed and the domain is estimated within which it provides accurate results. Then we investigate the response of three different valleys, having various geometrical and elastic parameters, to vertically incident P and SV waves, in both the frequency and time domains. The behavior of the valleys is shown to be qualitatively similar to their behavior for SH waves: the nonplanar interface causes surface waves (here Rayleigh waves) to be generated on valley edges, and to propagate laterally inside the basin. The amplitude of these Rayleigh waves depends greatly on the velocity contrast, the valley shape, and the incident wave type (P or SV), but it may be significantly higher than the disturbance associated with the direct incident signal. The frequency and direction of incident motion determine partly whether the fundamental or first higher mode will be predominantly excited, depending on the main component (vertical or horizontal) of the Rayleigh mode motion. Although the reflections of these Rayleigh waves on valley edges do not appear as clearly as in the SH case, a very long duration of the ground shaking inside the valley is still observed. In deep valleys, these laterally propagating Rayleigh waves may degenerate into a lateral resonance pattern, involving high-amplitude surface motion. These latter resonance modes, however, begin to appear in shallower valleys for incident SV waves than for incident P ones.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3