Ground-Motion Attenuation, Stress Drop, and Directivity of Induced Events in the Groningen Gas Field by Spectral Inversion of Borehole Records

Author:

Ameri Gabriele1,Martin Christophe1,Oth Adrien2

Affiliation:

1. SEISTER, Aubagne, France

2. European Center for Geodynamics and Seismology, Walferdange, Luxembourg

Abstract

ABSTRACT Production-induced earthquakes in the Groningen gas field caused damage to buildings and concerns for the population, the gas-field owner, and the local and national authorities and institutions. The largest event (ML=3.6) occurred in 2012 near Huizinge, and, despite the subsequent decision of the Dutch government to reduce the gas production in the following years, similar magnitude events occurred in 2018 and 2019 (ML=3.4). Thanks to the improvement of the local seismic networks in the last years, recent events provide a large number of recordings and an unprecedented opportunity to study the characteristics of induced earthquakes in the Groningen gas field and related ground motions. In this study, we exploit the S-wave Fourier amplitude spectra recorded by the 200 m depth borehole sensors of the G network from 2015 to 2019 to derive source and attenuation parameters for ML≥2 induced earthquakes. The borehole spectra are decomposed into source, attenuation, and site nonparametric functions, and parametric models are then adopted to determine moment magnitudes, corner frequencies, and stress drops of 21 events. Attenuation and source parameters are discussed and compared with previous estimates for the region. The impact of destructive interference of upgoing and downgoing waves at borehole depth on the derived parameters is also discussed and assessed to be minor. The analysis of the apparent source spectra reveals that several events show rupture directivity and provides clear observations of frequency-dependent directivity effects in induced earthquakes. The estimated rupture direction shows a good agreement with orientation of pre-existing faults within the reservoir. Our results confirm that rupture directivity is still an important factor for small-magnitude induced events, affecting the amplitude of recorded short-period response spectra and causing relevant spatial ground-motion variability.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3