Observation and Theory of Strain–Infrasound Coupling during Ground-Coupled Infrasound Generated by Rayleigh Waves in the Longitudinal Valley (Taiwan)

Author:

Canitano Alexandre1

Affiliation:

1. Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan

Abstract

ABSTRACT In this study, changes in atmospheric pressure recorded by absolute microbarometers operating in the Longitudinal Valley (Taiwan) during the passing seismic waves from strong earthquakes (Mw≥6) are systematically analyzed during the 2007–2019 period. Using a continuous wavelet transform analysis, local infrasound signals are detected for 23% of the events (21 events out of 89), with Mw ranging from 6.0 to 9.1 at a radial distance of 15 to about 4000 km from the central Longitudinal Valley. Infrasound signals are observed in the period range from about 1 to 20 s; they have maximal amplitudes ranging from 0.4 to 20 Pa and initiate predominantly during the passage of Rayleigh waves. The atmospheric pressure response to dilatational strain waves during seismoacoustic disturbances is investigated using collocated borehole strainmeter stations, and dynamic interactions between signals are characterized using a sliding windowed time-lagged cross-correlation analysis. The infrasound response shows a phase shift of −60° to −100°, with respect to the dilatation strain signal with a coupling factor of 0.002–0.006  Pa/nϵ for most of the cases (62%). Whereas acoustic pressure fluctuations are generated instantaneously by the vertical seismic velocity, the phase delay is related to the intrinsic nature of the dilatational strain. Observational strain–infrasound coupling parameters are in close agreement with theoretical estimates in the case of ground-coupled acoustic signals generated by Rayleigh waves. The study represents the first attempt to analyze ground-coupled infrasonic waves with strain waves and illustrates the potential of collocated strainmeter–microbarometer stations for basic seismoacoustic studies.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3