Magnitude Estimation for Earthquake Early Warning with Multiple Parameter Inputs and a Support Vector Machine

Author:

Zhu Jingbao12,Li Shanyou12,Song Jindong12ORCID

Affiliation:

1. Institute of Engineering Mechanics, China Earthquake Administration, Harbin, China

2. Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Harbin, China

Abstract

Abstract Accurately estimating the magnitude within the initial seconds after the P-wave arrival is of great significance in earthquake early warning (EEW). Over the past few decades, single-parameter approaches such as the τc and Pd methods have been applied to EEW magnitude estimation studies considering the first 3 s after the P-wave onset. However, these methods present considerable scatter and are affected by the signal-to-noise ratio (SNR) and epicentral distance. In this study, using Japanese K-NET strong-motion data, we propose a machine-learning method comprising multiple parameter inputs, namely, the support vector machine magnitude estimation (SVM-M) model, to determine earthquake magnitudes and resolve the aforementioned problems. Our results using a single seismological station record show that the standard deviation of the magnitude prediction errors of the SVM-M model is 0.297, which is less than those of the τc (1.637) and Pd (0.425) methods. The magnitudes estimated by the SVM-M model within 3 s after the P-wave arrival are not obviously affected by the SNR or epicentral distance, and not overestimated for MJMA≤5. In addition, in an offline EEW application, the magnitude estimation error of the SVM-M model gradually decreases with increasing time after the first station is triggered, and the underestimation of event magnitudes for 6.5≤MJMA gradually improves. These results demonstrate that the proposed SVM-M model can robustly estimate earthquake magnitudes and has potential for EEW.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3