Earthquakes Induced by Wastewater Disposal near Musreau Lake, Alberta, 2018–2020

Author:

Li Tianyang12ORCID,Gu Yu Jeffrey2ORCID,Wang Jingchuan2ORCID,Wang Ruijia3ORCID,Yusifbayov Javad4,Canales Mauricio Reyes4ORCID,Shipman Todd4

Affiliation:

1. School of Resources and Safety Engineering, Chongqing University, Chongqing, China

2. Department of Physics, University of Alberta, Edmonton, Alberta, Canada

3. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China

4. Alberta Geological Survey, Alberta Energy Regulator, Edmonton, Alberta, Canada

Abstract

Abstract Although hydraulic fracturing-induced earthquakes have been widely reported in Alberta, Canada, only one seismic cluster (the Cordel Field) has thus far been linked to wastewater disposal (WD). In this study, we report a statistically significant spatiotemporal correlation between recent earthquakes and nearby WD wells near Musreau Lake—the second disposal-induced earthquake swarm in Alberta. This newly occurred swarm contains five events with local magnitudes ML>3 from January 2018 to March 2020, forming into three tightly spaced clusters. The refined locations and focal mechanisms suggest a ∼10 km long northwest–southeast-trending rupture along the northern Rocky Mountains that developed over time, during which both poroelastic effects and static stress transfer played key roles. Through a statistical analysis of all reported induced earthquake clusters in the western Canada sedimentary basin (WCSB), we propose a linear predictive relationship (i.e., the “Interpolated Strike Orientation” model) between fault rupture direction and fault distance to the Rocky Mountains. This observation-based model, which is supported by both the focal mechanisms of the natural earthquakes and the nearby northwest-striking geological faults, is a new and useful reference for future assessments of seismic hazard in the WCSB.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3