Predictability of strong motions from the Northridge, California, earthquake

Author:

Anderson John G.1,Yu Guang1

Affiliation:

1. Seismological Laboratory and Department of Geological Sciences Mackay School of Mines University of Nevada Reno, Nevada 89557

Abstract

Abstract The composite source model for generating synthetic strong ground motions is tested for its ability to predict the statistical characteristics of Northridge accelerograms recorded in or adjacent to the San Fernando valley. The general problem is prediction of strong motions at a site of engineering interest with sufficient realism to be useful for engineering applications. The strongest test of any proposed method is a blind prediction. For this study, a completely blind test was not possible. Our objective was to use only a preliminary description of fault geometry and magnitude and previously published velocity models and, without iteration to improve the quality of fit, to evaluate the differences between predicted and observed accelerograms. The parameters that we predict are peak acceleration, peak velocity, peak displacement, Fourier spectra at seven frequencies, and pseudorelative velocity response (5% damping) at seven periods. Our results are given for 14 stations. For the horizontal components, these parameters are all predicted with a maximum bias of under 50% and an average bias of observations exceeding predictions by 6%. For peak acceleration and some response spectral periods, the bias for this model is smaller than at least some regressions, when applied to this specific earthquake. On the vertical component, the maximum bias is a factor of 2, and the average gives predictions exceeding observations by 25%. Standard deviations of the common logarithm of the ratio of observed-to-predicted parameters are typically about 0.3, which is perhaps 50% greater than the standard deviations typical of regressions but comparable to standard deviations of observations from this earthquake compared to regressions. In the future, it is likely that, in some cases, traditional regressions will be replaced with synthetic calculations of some type, such as the method used here. Based on the results of this study, the amount of progress that has been made in obtaining that goal is very encouraging.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3