Precariously balanced rocks and ground-motion maps for Southern California

Author:

Brune James N.1

Affiliation:

1. Seismological Laboratory Mackay School of Mines Reno, Nevada 89557-0141

Abstract

Abstract Groups of precariously balanced rocks are effectively low-resolution strong-motion seismoscopes that have been operating on solid rock outcrops for thousands of years and, once the methodology has been developed, can provide important information about seismic risk. In one zone, near Victorville, only 30 km from the nearest point on the San Andreas fault, more than 50 precarious rocks have been documented. Widespread rock varnish suggests that many of these rocks have been in their current unstable positions for thousands of years. We have established the mechanical basis for rough estimates of the horizontal accelerations necessary to topple these rocks, using field observations and numerical and physical modeling. To verify that zones of precarious rocks do not occur near historic earthquakes, searches using binoculars were made along roads, with occasional foot surveys, near large earthquakes. Based on these reconnaissance searches, we conclude that no precarious rock zones are found within 15 km of zones of high-energy release of historic large earthquakes. To document the occurrence of precarious rocks in southern California, road surveys were carried out along major roads. Four zones of precarious rocks and seven other zones of somewhat less precarious rocks have been documented. Published probabilistic ground-motion maps for southern California are compared with the occurrence of zones of precarious and semi-precarious rocks. The results are encouraging and suggest that eventually, studies of precarious rocks will provide important constraints on the assumptions on which the maps are based. Results from studies of precarious rocks may eventually provide important information for siting and design of sensitive structures such as hospitals and power plants. Precarious rocks give a direct indication of past ground shaking, in contrast to the indirect inference provided by fault-trenching studies, which may be subject to uncertainties in the actual time history of slip due to the fault (e.g., fault creep, “slow” earthquakes, or unknown dynamic stress drop). It is concluded that precarious rocks warrant further study and quantitative analysis.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3