Pycheron: A Python-Based Seismic Waveform Data Quality Control Software Package

Author:

Aur Katherine Anderson1,Bobeck Jessica1,Alberti Anthony1,Kay Phillip1

Affiliation:

1. Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

Abstract

Abstract Supplementing an existing high-quality seismic monitoring network with openly available station data could improve coverage and decrease magnitudes of completeness; however, this can present challenges when varying levels of data quality exist. Without discerning the quality of openly available data, using it poses significant data management, analysis, and interpretation issues. Incorporating additional stations without properly identifying and mitigating data quality problems can degrade overall monitoring capability. If openly available stations are to be used routinely, a robust, automated data quality assessment for a wide range of quality control (QC) issues is essential. To meet this need, we developed Pycheron, a Python-based library for QC of seismic waveform data. Pycheron was initially based on the Incorporated Research Institutions for Seismology’s Modular Utility for STAtistical kNowledge Gathering but has been expanded to include more functionality. Pycheron can be implemented at the beginning of a data processing pipeline or can process stand-alone data sets. Its objectives are to (1) identify specific QC issues; (2) automatically assess data quality and instrumentation health; (3) serve as a basic service that all data processing builds on by alerting downstream processing algorithms to any quality degradation; and (4) improve our ability to process orders of magnitudes more data through performance optimizations. This article provides an overview of Pycheron, its features, basic workflow, and an example application using a synthetic QC data set.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3