The 4 January 2006 (Mw 6.6), San Pedro Martir Earthquake: Example of an Earthquake for Calibrating Excitation and Attenuation Studies

Author:

Quintanar Luis1,Ortega Roberto2,Rodríguez‐Lozoya Héctor E.3,Domínguez‐Reyes Tonatiuh4

Affiliation:

1. Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, C.P. 04510, Coyoacán, CDMX, Mexico, luisq@igeofisica.unam.mx

2. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Miraflores 334, Bellavista, C.P. 23050, La Paz, Baja California Sur, Mexico, ortega@cicese.mx

3. Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Calzada de las Américas y Universitarios, Ciudad Universitaria, s/n, C.P. 80040, Culiacán Rosales, Sinaloa, Mexico, rolohe@yahoo.com

4. Centro Universitario de Estudios Vulcanológicos, Universidad de Colima, Avenida Universidad 333, Las Víboras, C.P. 28040, Colima, Mexico, tonatiuh@ucol.mx

Abstract

Abstract An earthquake of magnitude 6.6 occurred on 4 January 2006, at 28.081° N and 112.381° W along a transform fault that joins the San Pedro Martir and the Guaymas basins in the Gulf of California extensional province. We located 17 foreshocks and 38 aftershocks. The foreshocks occurred on a fault perpendicular to the transform fault, where the main event occurred. The aftershocks were located along a fault length of approximately 18 km with a northwest–southeast trend. The average Brune static stress drop of the San Pedro Martir event was 8 MPa. From a time‐domain moment tensor inversion, we obtained the fault geometry given by strike of 129°±1°, dip of 86°±4°, and rake of 168°±12°, which was constrained to have a nonisotropic component and a source depth of 6±2  km. We used the inversion code from Yagi et al. (1999) to invert near field and teleseismic P waves to obtain the spatial slip distribution over the fault. The event had a single source and a moment rate function (MRF) displaying a triangular shape with a duration of 12 s. The rupture propagated toward the northwest from the hypocenter over a rupture area of 28×12  km2 with a maximum slip displacement of 2.3 m and a seismic moment of 8.79×1018  N·m. The directivity confirmed that the rupture propagated from the southeast to the northwest. Few aftershocks were located in the rupture area obtained from the inversion. Most aftershocks occurred toward the southeast of the epicenter. All these source analyses were performed to have a well‐calibrated excitation term for future regional modeling of ground‐motion parameters. The magnitudes of the foreshocks preceding this peculiar earthquake were higher than those of the aftershocks. Our results show that earthquakes with magnitudes of five or higher present a simple and self‐scaling law using a constant stress parameter, but for earthquakes with magnitudes lower than five, the high frequencies are depleted, and the earthquake can be replicated by a low‐stress parameter of 0.28 MPa. We also observed that the aftershocks and foreshocks differ in their frequency content. Although the foreshocks follow Brune’s omega‐squared source term, the aftershocks have larger contents of high frequencies.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3