Optimal Third-Order Symplectic Integration Modeling of Seismic Acoustic Wave Propagation

Author:

Li Chuan1,Liu Jianxin1,Chen Bo1,Sun Ya1

Affiliation:

1. School of Geoscience and Info-Physics, Central South University, Changsha, Hunan, People’s Republic of China

Abstract

ABSTRACT Seismic wavefield modeling based on the wave equation is widely used in understanding and predicting the dynamic and kinematic characteristics of seismic wave propagation through media. This article presents an optimal numerical solution for the seismic acoustic wave equation in a Hamiltonian system based on the third-order symplectic integrator method. The least absolute truncation error analysis method is used to determine the optimal coefficients. The analysis of the third-order symplectic integrator shows that the proposed scheme exhibits high stability and minimal truncation error. To illustrate the accuracy of the algorithm, we compare the numerical solutions generated by the proposed method with the theoretical analysis solution for 2D and 3D seismic wave propagation tests. The results show that the proposed method reduced the phase error to the eighth-order magnitude accuracy relative to the exact solution. These simulations also demonstrated that the proposed third-order symplectic method can minimize numerical dispersion and preserve the waveforms during the simulation. In addition, comparing different central frequencies of the source and grid spaces (90, 60, and 20 m) for simulation of seismic wave propagation in 2D and 3D models using symplectic and nearly analytic discretization methods, we deduce that the suitable grid spaces are roughly equivalent to between one-fourth and one-fifth of the wavelength, which can provide a good compromise between accuracy and computational cost.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3