Directivity of M 3.1 Earthquake near Anza, California and the Effect on Peak Ground Motion

Author:

Fletcher Jon B.1,Boatwright John1

Affiliation:

1. U.S. Geological Survey, Menlo Park, California, U.S.A.

Abstract

ABSTRACT We show the effect of rupture directivity on peak ground-motion values for a moderate magnitude event at Anza, California, and neighboring stations at the Imperial Valley. The event was located near Borrego Springs on the west side of the Salton Sea and was well recorded at broadband stations near Anza, California, and at stations on the west side of the Imperial Valley. After correcting for regional attenuation, an anomalously large residual in peak motion was observed at station ERR just to the southeast of the epicenter. Using the algorithm from Boatwright (2007), peak motions from the regional seismic networks in southern California were inverted to determine directivity, which was to the southeast along the trend of the San Jacinto fault toward station ERR. This algorithm uses peak values compiled for the ShakeMap system mostly at regional distances. It does not capture the main features of the source time function (STF) predicted by directivity. Consequently, we determined the second-degree moments for this earthquake, which confirmed that station ERR has a shorter and higher STF compared to stations to the northwest suggesting rupture propagated to the southeast. The azimuthal distribution of local stations is sparse, but nevertheless the largest amplitudes (such as at station ERR) correlate well with the maximum in the radiation pattern and smaller values with the minima, which is the radiation pattern for SH plus the effect of directivity. Using the data from the analysis of the second-degree moments, the characteristic length of the fault is 0.58 km, assuming an idealized unilateral extended rupture with a rupture time of 0.09 s. This yields an apparent rupture velocity of 6.4  km/s for an idealized model, which is super shear. This value is model dependent and would change if, for example, the rupture was bilateral. Although this value is even greater than the P-wave velocity, it supports the idea that the rupture velocity is super shear and would enhance the correlation between the peak motions and the radiation pattern.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3