General P, type-I S, and type-II S waves in anelastic solids; inhomogeneous wave fields in low-loss solids

Author:

Borcherdt Roger D.1,Wennerberg Leif1

Affiliation:

1. U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

Abstract

Abstract The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields causes the velocity to decrease, the fractional-energy loss (Q−1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q−1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q−1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude. For inhomogeneous wave fields in low-loss solids, only the tilt of the particle motion ellipse for P and type-I S waves is independent to first order of the degree of inhomogeneity. Quantitative estimates for the characteristics of inhomogeneous plane body waves in layered low-loss solids are derived and guidelines established for estimating the effect of inhomogeneity on seismic body waves and a Rayleigh-type surface wave in low-loss media.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3