The Local Seismoacoustic Wavefield of a Research Nuclear Reactor and Its Response to Reactor Power Level

Author:

Marcillo Omar E.12,Maceira Monica3,Chai Chengping3,Gammans Christine1,Hunley Riley3,Young Chris3

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, New Mexico, U.S.A.

2. Now at, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

3. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.

Abstract

Abstract We describe the seismoacoustic wavefield recorded outdoors but inside the facility fence of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (Tennessee). HFIR is a research nuclear reactor that generates neutrons for scattering, irradiation research, and isotope production. This reactor operates at a nominal power of 85 MW, with a full-power period between 24 and 26 days. This study uses data from a single seismoacoustic station that operated for 60 days and sampled a full operating reactor cycle, that is, full-power operation and end-of-cycle outage. The analysis presented here is based on identifying signals that characterize the steady, that is, full-power operation and end-of-cycle outage, and transitional, that is, start-up and shutdown, states of the reactor. We found that the overall seismoacoustic energy closely follows the main power cycle of the reactor and identified spectral regions excited by specific reactor operational conditions. In particular, we identified a tonal noise sequence with a fundamental frequency around 21.4 Hz and multiple harmonics that emerge as the reactor reaches 90% of nominal power in both seismic and acoustic channels. We also utilized temperature measurements from the monitoring system of the reactor to suggest links between the operation of reactor’s subsystems and seismoacoustic signals. We demonstrate that seismoacoustic monitoring of an industrial facility can identify and track some industrial processes and detect events related to operations that involve energy transport.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3