Aseismic Slip and Cascade Triggering Process of Foreshocks Leading to the 2021 Mw 6.1 Yangbi Earthquake

Author:

Liu Xiaoge1ORCID,Xu Wenbin1ORCID,He Zilong1,Fang Lihua2,Chen Zhidan1

Affiliation:

1. Laboratory of Volcano and Earthquake Research, School of Geosciences and Info-Physics, Central South University, Changsha, Hunan, People’s Republic of China

2. Institute of Geophysics, China Earthquake Administration, Beijing, China

Abstract

AbstractUnderstanding the nature of foreshock evolution is important for earthquake nucleation and hazard evaluation. Aseismic slip and cascade triggering processes are considered to be two end-member precursors in earthquake nucleation processes. However, to perceive the physical mechanisms of these precursors leading to the occurrence of large events is challenging. In this study, the relocated 2021 Yangbi earthquake sequences are observed to be aligned along the northwest–southeast direction and exhibit spatial migration fronts toward the hypocenters of large events including the mainshock. An apparent static Coulomb stress increase on the mainshock hypocenter was detected, owing to the precursors. This suggests that the foreshocks are manifestations of aseismic transients that promote the cascade triggering of both the foreshocks and the eventual mainshock. By jointly inverting both Interferometric Synthetic Aperture Radar and Global Navigation Satellite Systems data, we observe that the mainshock ruptured a blind vertical fault with a peak slip of 0.8 m. Our results demonstrate that the lateral crustal extrusion and lower crustal flow are probably the major driving mechanisms of mainshock. In addition, the potential seismic hazards on the Weixi–Weishan and Red River faults deserve further attention.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3