Rapid Geodetic Observations of Spatiotemporally Varying Postseismic Deformation Following the Ridgecrest Earthquake Sequence: The U.S. Geological Survey Response

Author:

Brooks Benjamin A.1,Murray Jessica1,Svarc Jerry2,Phillips Eleyne2,Turner Ryan2,Murray Mark2,Ericksen Todd2,Wang Kang3,Minson Sarah1,Burgmann Roland3,Pollitz Fred1,Hudnut Ken4,Nevitt Johanna1,Roeloffs Evelyn5,Hernandez Janis6,Olson Brian6

Affiliation:

1. Earthquake Science Center, U.S. Geological Survey, Moffett Field, California, U.S.A.

2. Earthquake Science Center, U.S. Geological Survey, Menlo Park, California, U.S.A.

3. Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, U.S.A.

4. Earthquake Science Center, U.S. Geological Survey, Pasadena, California, U.S.A.

5. Earthquake Science Center, U.S. Geological Survey, Vancouver, Washington, U.S.A.

6. California Geological Survey, Los Angeles, California, U.S.A.

Abstract

Abstract The U.S. Geological Survey’s geodetic response to the 4–5 July 2019 (Pacific time) Ridgecrest earthquake sequence comprised primarily the installation and/or reoccupation of Global Navigation Satellite System (GNSS) monumentation. Our response focused primarily on the United States’ Navy’s China Lake Naval Air Weapons Station base (NAWSCL). This focus was because much of the surface rupture occurred on the NAWSCL and because of NAWSCL access restrictions only permitting Federal and State of California personnel. In total, we measured or are still measuring at 24 sites, 14 of which were on the NAWSCL and, as of this writing, operational. The majority of sites were set up as continuous stations logging at either 1 sample per second or 1 sample per 15 s. Two stations were recording a 200 m cross-rupture aperture starting ∼10  hr after the M 6.4 event, and they recorded the coseismic displacements of the M 7.1. Approximately, 1 hr after the M 7.1 event, two new stations were recording a ∼200  m cross-rupture aperture of the surface rupture. In the days following, we established the rest of the stations ranging to a distance of ∼15  km from the M 7.1 principal rupture trace. The lack of differential displacement across the M 6.4 rupture during the M 7.1 event suggests that it did not reactivate the M 6.4 plane. The lack of differential cross-fault displacement for both events suggests that rapid shallow afterslip did not occur at those two locations. The postseismic time series from these stations shows centimeters of horizontal displacement over periods of a few months. They record a mixture of fault-parallel and fault-normal displacements that, in conjunction with analysis of more spatially complete Interferometric Synthetic Aperture Radar displacement fields, suggest that both poroelastic and afterslip phenomena occur along the M 6.4 and 7.1 rupture planes. Using preliminary data from these and other regional stations, we also explore the Ridgecrest sequence’s effect on regional GNSS time series and the differentiation of long-term postseismic motions and secular deformation rates. We find that redefining a common-mode noise filter using different GNSS stations that are assumed to be unaffected by the earthquakes results in small but systematic differences in the regional velocity field estimate.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3