The 2018 Palu Tsunami: Coeval Landslide and Coseismic Sources

Author:

Williamson Amy L.1,Melgar Diego1,Xu Xiaohua2,Milliner Christopher3

Affiliation:

1. Department of Earth Sciences, University of Oregon, Eugene, Oregon, U.S.A.

2. Scripps Institutions of Oceanography, University of California San Diego, La Jolla, California, U.S.A.

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

Abstract

Abstract On 28 September 2018, Indonesia was struck by an MW 7.5 strike-slip earthquake. An unexpected tsunami followed, inundating nearby coastlines leading to extensive damage. Given the traditionally non-tsunamigenic mechanism, it is important to ascertain if the source of the tsunami is indeed from coseismic deformation, or something else, such as shaking induced landsliding. Here we determine the leading cause of the tsunami is a complex combination of both. We constrain the coseismic slip from the earthquake using static offsets from geodetic observations and validate the resultant “coseismic-only” tsunami to observations from tide gauge and survey data. This model alone, although fitting some localized run-up measurements, overall fails to reproduce both the timing and scale of the tsunami. We also model coastal collapses identified through rapidly acquired satellite imagery and video footage as well as explore the possibility of submarine landsliding using tsunami raytracing. The tsunami model results from the landslide sources, in conjunction with the coseismic-generated tsunami, show a greatly improved fit to both tide gauge and field survey data. Our results highlight a case of a damaging tsunami the source of which is a complex mix of coseismic deformation and landsliding. Tsunamis of this nature are difficult to provide warning for and are underrepresented in regional tsunami hazard analysis.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3