In Situ Shear-Wave Velocity Assessment at the Delaney Park Downhole Array, Anchorage, Alaska

Author:

Wang Hai-Yun1,Jiang Wei-Ping1

Affiliation:

1. Institute of Engineering Mechanics, and Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration, Sanhe City, Hebei Province, China

Abstract

Abstract The shear-wave velocity (VS) in soil is an important parameter to characterize dynamic soil properties. The Delaney Park downhole array was deployed in 2003 without measuring the shear- and compression-wave velocity (VS and VP) profiles. Thornley et al. (2019) measured the VS and VP profiles using the downhole method after the sensor was removed from the 61 m borehole with casing in the array. However, the waves propagating along the casing wall may have a great influence on the recognition of the first arrival of waves propagating in the soil. Using horizontal and vertical components of weak-motion data of eight local earthquakes recorded by the array, in situ VS and VP profiles were assessed by the seismic interferometry based on deconvolution, respectively. The results are as follows. The VS and VP profiles computed by this study and measured by Thornley et al. (2019) are in relatively good agreement at a depth of 10–45 m and at a depth of 30–45 m, respectively, and in very poor agreement at other depths. The average VS profiles computed by this study are more consistent with the derived VS from the standard penetration test data at the site with slower near-surface velocities relative to the downhole logging analysis. There are strong anisotropy in the strata below 45 m and weak anisotropy with various degrees at various depths in the strata above 45 m.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3