Common-Reflection-Point-Based Prestack Depth Migration for Imaging Lithosphere in Python: Application to the Dense Warramunga Array in Northern Australia

Author:

Sun Weijia1,L. N. Kennett Brian2

Affiliation:

1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

2. Research School of Earth Sciences, Australian National University, Canberra, Australia

Abstract

Abstract We exploit estimates of P-wave reflectivity from autocorrelation of transmitted teleseismic P arrivals and their coda in a common reflection point (CRP) migration technique. The approach employs the same portion of the vertical-component seismogram, as in standard Ps receiver function analysis. This CRP prestack depth migration approach has the potential to image lithospheric structures on scales as fine as 4 km or less. The P-wave autocorrelation process and migration are implemented in open-source software—the autocorrelogram calculation (ACC) package, which builds on the widely used the seismological Obspy toolbox. The ACC package is written in the open-source and free Python programming language (3.0 or newer) and has been extensively tested in an Anaconda Python environment. The package is simple and friendly to use and runs on all major operating systems (e.g., Windows, macOS, and Linux). We utilize Python multiprocessing parallelism to speed up the ACC on a personal computer system, or servers, with multiple cores and threads. The application of the ACC package is illustrated with application to the closely spaced Warramunga array in northern Australia. The results show how fine-scale structures in the lithospheric can be effectively imaged at relatively high frequencies. The Moho ties well with conventional H−κ receiver analysis and deeper structure inferred from stacked autocorrelograms for continuous data. CRP prestack depth migration provides an important complement to common conversion point receiver function stacks, since it is less affected by surface multiples at lithospheric depths.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Earth Structure Across Many Scales;Perspectives of Earth and Space Scientists;2022-05-23

2. Passive seismic imaging of a craton edge – Central Australia;Tectonophysics;2020-12

3. Unveiling a continent;Astronomy & Geophysics;2020-12-01

4. Teleseismic P-Wave Coda Autocorrelation Imaging of Crustal and Basin Structure, Bighorn Mountains Region, Wyoming, U.S.A.;Bulletin of the Seismological Society of America;2020-11-17

5. The transition from the Thomson Orogen to the North Australian Craton from seismic data;Australian Journal of Earth Sciences;2020-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3