Affiliation:
1. 1Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, U.S.A.
2. 2San Diego State University, San Diego, California, U.S.A.
Abstract
ABSTRACT
The variability in spatial resolution of seismic velocity models obtained via tomographic methodologies is attributed to many factors, including inversion strategies, ray-path coverage, and data integrity. Integration of such models, with distinct resolutions, is crucial during the refinement of community models, thereby enhancing the precision of ground-motion simulations. Toward this goal, we introduce the probability graphical model (PGM), combining velocity models with heterogeneous resolutions and nonuniform data point distributions. The PGM integrates data relations across varying resolution subdomains, enhancing detail within low-resolution (LR) domains by utilizing information and prior knowledge from high-resolution (HR) subdomains through a maximum posterior problem. Assessment of efficacy, utilizing both 2D and 3D velocity models—consisting of synthetic checkerboard models and a fault-zone model from Ridgecrest, California—demonstrates noteworthy improvements in accuracy, compared to state-of-the-art fusion techniques. Specifically, we find reductions of 30% and 44% in computed travel-time residuals for 2D and 3D models, respectively, as compared to conventional smoothing techniques. Unlike conventional methods, the PGM’s adaptive weight selection facilitates preserving and learning details from complex, nonuniform HR models and applies the enhancements to the LR background domain.
Publisher
Seismological Society of America (SSA)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Graph-learning approach to combine multiresolution seismic velocity models;Geophysical Journal International;2024-06-14
2. Seismic Tomography 2024;Bulletin of the Seismological Society of America;2024-05-03