Earthquake locations by 3-D finite-difference travel times

Author:

Nelson Glenn D.1,Vidale John E.1

Affiliation:

1. C. F. Richter Seismology Laboratory University of California Santa Cruz, California 95064

Abstract

Abstract We present a new method for locating earthquakes in a region with arbitrarily complex three-dimensional velocity structure, called QUAKE3D. Our method searches a gridded volume and finds the global minimum travel-time residual location within the volume. Any minimization criterion may be employed. The L1 criterion, which minimizes the sum of the absolute values of travel-time residuals, is especially useful when the station coverage is sparse and is more robust than the L2 criterion (which minimizes the RMS sum) employed by most earthquake location programs. On a UNIX workstation with 8 Mbytes memory, travel-time grids of size 150 by 150 by 50 are reasonably employed, with the actual geographic coverage dependent on the grid spacing. Location precision is finer than the grid spacing. Earthquake recordings at six stations in Bear Valley are located as an example, using various layered and laterally varying velocity models. Locations with QUAKE3D are nearly identical to HYPOINVERSE locations when the same flat-layered velocity model is used. For the examples presented, the computation time per event is approximately 4 times slower than HYPOINVERSE, but the computation time for QUAKE3D is dependent only on the grid size and number of stations, and independent of the velocity model complexity. Using QUAKE3D with a laterally varying velocity model results in locations that are physically more plausible and statistically more precise. Compared to flat-layered solutions, the earthquakes are more closely aligned with the surface fault trace, are more uniform in depth distribution, and the event and station travel-time residuals are much smaller. Hypocentral error bars computed by QUAKE3D are more realistic in that the trade-off of depth versus origin time is implicit in our error estimation, but ignored by HYPOINVERSE.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3