A two-layer model for aseismic slip on the Superstition Hills fault, California

Author:

Bilham Roger1,Behr Jeffrey1

Affiliation:

1. Cires and Department of Geological Sciences University of Colorado Boulder, Colorado 80309-0216

Abstract

Abstract A new differential creepmeter on the Superstition Hills fault reveals that afterslip at approximately 28 mm/year consists of episodic creep events super-imposed on a slow stable-slip component of 2.4 mm/year. The relative contribution from this background slip (8.5% of the total aseismic surface slip) has remained approximately constant for the past 2 years. To account for this observed behavior, we proposed a two-layer model for aseismic slip in which stable-sliding occurs from the surface to a transition depth, below which episodic creep events are initiated. These creep events propagate to the surface through the stable-sliding layer. From the ratio of background slip velocity to total afterslip velocity, we estimate the ratio of depths of stable-sliding to episodic-slip regions to be approximately 1:10. Thus, assuming that episodic slip extends to 3 km, we infer that background surface creep is moderated by processes in the uppermost 300 m. We speculate that the transition depth is sensitive to applied fault-normal stresses and suggest that the ratio of stable-sliding to episodic-slip velocities may provide an indication of secular variations in tectonic stress. Since the background creep is evidently continuous and little affected by episodic events, its velocity may provide a sensitive indication of applied tectonic strain in the period range days to years.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3