Numerical experiments in broadband receiver function analysis

Author:

Cassidy J. F.1

Affiliation:

1. Department of Geophysics and Astronomy University of British Columbia 2219 Main Mall Vancouver, British Columbia Canada V6T 1Z4

Abstract

Abstract The use of broadband receiver function analysis to estimate the fine-scale S-velocity structure of the lithosphere is becoming increasingly popular. A series of numerical experiments shows several important aspects of this technique, with emphasis on estimation of dipping interfaces. The recent modification introduced to the receiver function analysis technique that preserves absolute amplitudes (Ammon, 1991) is more robust than the previous technique of modeling receiver functions that were normalized to unit amplitude. Using the latter method, shallow (e.g., depths less than ∼2 km) high-velocity contrast interfaces may alter the apparent amplitudes of Ps phases and produce inaccuracies in the Earth model developed. The use of absolute amplitudes minimizes this potential for error. When research targets include deep dipping structure, tight stacking bounds (e.g., ≦ 10° in backazimuth (BAZ) and epicentral distance (Δ)) should be applied to avoid attenuating Ps phases and to aid in the identification of reverberations or scattered energy. Reverberations sample a relatively large lateral range about the recording site (e.g., a radius of 1 to 1.5 times the depth of the reflecting interface) and in the presence of dipping interfaces exhibit drastic variations in amplitude and arrival time as a function of BAZ and Δ. Thus, they cannot readily be used to provide constraints on the Earth structure. Formal inversion techniques, which attempt to match all arrivals in the waveform, must be used with caution when modeling receiver functions from complex regions. Only those phases whose amplitude and arrival-time variations as a function of BAZ and Δ are consistent with those of Ps conversions should be modeled. Forward modeling may resolve, depending upon the data quality and noise level, S-velocity contrasts greater than ∼ 0.2 to 0.4 km / sec. Layers of thickness 2 to 5 km may be accurately imaged, and transition zones may be examined by considering various frequency bands of the data. In order to better understand the resolving power of the data, the averaging functions associated with the receiver functions may be calculated from the observed data and, if desired, used in the forward modeling process.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3