Soil-structure interaction at CDMG and USGS accelerograph stations

Author:

Crouse C. B.1,Hushmand Behnam1

Affiliation:

1. The Earth Technology Corporation 3777 Long Beach Boulevard Long Beach, California 90807

Abstract

Abstract Forced harmonic and impulse-response vibration tests were conducted at several California accelerograph stations operated by the California Division of Mines and Geology (CDMG) and U.S. Geological Survey (USGS) to determine the extent to which soil-structure interaction may be affecting the recorded ground motions. The results of the tests on the foundations comprising USGS Station 6 in the Imperial Valley and CDMG Cholame 1E and Fault Zone 3 stations in the Cholame Valley indicated the presence of highly damped fundamental frequencies between 20 and 40 Hz. However, at the much larger Differential Array station, a masonry-block structure approximately 6 km southwest of Station 6, a moderately damped fundamental frequency of 12 Hz was observed. Approximate transfer functions between earthquake motions recorded at the stations and the free-field motions were computed from the response data obtained from the forced harmonic vibration tests. For the three smaller stations, these functions showed peak amplification factors ranging from 1.25 to 1.4 at frequencies between 20 and 40 Hz. The amplification at smaller frequencies was insignificant. For the Differential Array station, the amplification factor was 1.5 at 12 Hz and was roughly 0.6 for frequencies between 14 and 25 Hz. These results suggest that soil-structure interaction will have little effect on ground motions recorded at the smaller stations provided that most of the energy in these motions is confined to frequencies less than approximately 20 Hz. However, at the Differential Array station, soil-structure interaction probably has had, and will continue to have, a significant influence on the motions recorded at this station.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3