Geomechanical Modeling of Ground Surface Deformation Associated with Thrust and Reverse-Fault Earthquakes: A Distinct Element Approach

Author:

Chiama Kristen1ORCID,Chauvin Benjamin12ORCID,Plesch Andreas1ORCID,Moss Robb3ORCID,Shaw John H.1ORCID

Affiliation:

1. 1Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts, U.S.A.

2. 2Now at, Mira Geoscience Ltd., Westmount, Quebec, Canada

3. 3Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, California, U.S.A.

Abstract

ABSTRACTWe seek to improve our understanding of the physical processes that control the style, distribution, and intensity of ground surface ruptures on thrust and reverse faults during large earthquakes. Our study combines insights from coseismic ground surface ruptures in historic earthquakes and patterns of deformation in analog sandbox fault experiments to inform the development of a suite of geomechanical models based on the distinct element method (DEM). We explore how model parameters related to fault geometry and sediment properties control ground deformation characteristics such as scarp height, width, dip, and patterns of secondary folding and fracturing. DEM is well suited to this investigation because it can effectively model the geologic processes of faulting at depth in cohesive rocks, as well as the granular mechanics of soil and sediment deformation in the shallow subsurface. Our results show that localized fault scarps are most prominent in cases with strong sediment on steeply dipping faults, whereas broader deformation is prominent in weaker sediment on shallowly dipping faults. Based on insights from 45 experiments, the key parameters that influence scarp morphology include the amount of accumulated slip on a fault, the fault dip, and the sediment strength. We propose a fault scarp classification system that describes the general patterns of surface deformation observed in natural settings and reproduced in our models, including monoclinal, pressure ridge, and simple scarps. Each fault scarp type is often modified by hanging-wall collapse. These results can help to guide both deterministic and probabilistic assessment in fault displacement hazard analysis.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3