Bayesian Updating and Model Class Selection for Magnitude Estimation in Earthquake Early Warning: Application to Earthquake Sequences in Sichuan Region, China

Author:

Li Hongjie1ORCID,Taflanidis Alexandros A.1ORCID,Zhang Jianjing2ORCID

Affiliation:

1. 1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, U.S.A.

2. 2Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Sichuan, China

Abstract

ABSTRACT A key component of earthquake early warning system is the development of an accurate and robust predictive model relating the recorded waveform to seismicity and ground-shaking characteristics. This article presents a probabilistic Bayesian inference methodology to address relevant sources of uncertainty in the development of such predictive models. We investigate the calibration of models for the earthquake magnitude based on the maximum predominant period, considering the Sichuan region of Southwestern China as a case study. Established approaches for developing predictive models in this context adopt deterministic tools for some aspects of this development. They consider a linear regression calibrated typically through least squares optimization and frequently utilize the mean observations for each event averaging across the data available from different stations. The proposed Bayesian learning accommodates the following improvements: a model class selection is established, comparing across different candidate models to promote the most appropriate from accuracy and robustness perspectives; the full posterior distribution of the model parameters is identified, quantifying relevant uncertainties in their values; a heteroscedastic model is considered for the estimation error variance; and the observations are separately considered at the calibration stage. Each of these improvements ultimately addresses a different source of uncertainty impacting the predictive model development. We utilize transitional Markov chain Monte Carlo for obtaining samples from the posterior and for calculating the evidence to perform the model class selection. Different regression models are examined, and the Bayesian-based model identification is compared against the common least squares identification approach. Results show the value added by comparing across the different models and by considering a heteroskedastic variance model, offering insights into the advantages of Bayesian-based predictive models in earthquake early warning applications.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3