Deep-Neural-Network-Based Estimation of Site Amplification Factor from Microtremor H/V Spectral Ratio

Author:

Pan Da1ORCID,Miura Hiroyuki1ORCID,Kanno Tatsuo2,Shigefuji Michiko2ORCID,Abiru Tetsuo3

Affiliation:

1. Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

2. Graduate School of Human-Environment Studies, Kyushu University, Nishi-ku, Fukuoka, Fukuoka, Japan

3. The Chugoku Electric Power Co. Inc., Naka-ku, Hiroshima, Hiroshima, Japan

Abstract

ABSTRACT Site amplification factors (SAFs) of S wave at ground surface are crucial for evaluating and predicting seismic ground motions. This study proposed a novel methodology for directly estimating S-wave SAF from microtremor horizontal-to-vertical spectral ratio (MHVR) based on deep neural network (DNN) model. We analyzed site amplifications obtained from generalized spectral inversion technique and microtremor data observed at Kyoshin net and Kiban–Kyoshin network sites in Chugoku district, western Japan. The DNN model was developed using peak frequency and the frequency-dependent relationship between MHVRs and SAFs. The sites were divided into training set, validation set, and test set. The training set and validation set were used in k-fold cross-validation technique to evaluate and select optimal model. Once the optimal model had been determined, the model was employed on the test set that was completely independent of the training and validation set for evaluating the generalization performance. Residuals and root mean square errors between the estimated and observed SAFs were evaluated to discuss the applicability of the proposed model. We also confirmed that the DNN model shows better performance in estimating SAFs compared with the existing double empirical correction method.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3