Dynamics of an expanding circular fault

Author:

Madariaga Raul1

Affiliation:

1. Department of Earth and Planetary Sciences Massachusetts Institute of Technology 54-514 Cambridge, Massachusetts 02139

Abstract

abstract We study a plane circular model of a frictional fault using numerical methods. The model is dynamic since we specify the effective stress at the fault. In one model we assume that the fault appears instantaneously in the medium; in another, that the rupture nucleates at the center and that rupture proceeds at constant subsonic velocity until it suddenly stops. The total source slip is larger at the center and the rise time is also longer at the center of the fault. The dynamic slip overshoots the static slip by 15 to 35 per cent. As a consequence, the stress drop is larger than the effective stress and the apparent stress is less than one half the effective stress. The far-field radiation is discussed in detail. We distinguish three spectral regions. First, the usual constant low-frequency level. Second, an intermediate region controlled by the fault size and, finally, the high-frequency asymptote. The central region includes the corner frequency and is quite complicated. The corner frequency is shown to be inversely proportional to the width of the far-field displacement pulse which, in turn, is related to the time lag between the stopping phases. The average corner frequency of S waves v0s is related to the final source radius, a, by v0s = 0.21 β/α. The corner frequency of P waves is larger than v0s by an average factor of 1.5.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 349 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3