The Damage Assessment for Rapid Response (DARR) Method and its Application to Different Ground-Motion Levels and Building Types

Author:

Petrovic Bojana1ORCID,Scaini Chiara1ORCID,Parolai Stefano12ORCID

Affiliation:

1. 1National Institute of Oceanography and Applied Geophysics—OGS, Udine, Italy

2. 2University of Trieste, Trieste, Italy

Abstract

AbstractSeismic recordings in buildings and on the ground are increasingly available due to the increment and expansion of seismic monitoring networks worldwide. However, most urban strong-motion networks consist of stations installed at the ground or, less frequently, in selected building’s basement. It is, therefore, of utmost importance to develop methods that can provide estimates of expected structural damage, starting from earthquake recordings at the ground level. Damage Assessment for Rapid Response (DARR) provides first-level estimates of the expected damage to buildings, based on ground-motion recordings and simple information on buildings’ characteristics. In this work, we apply DARR using both weak and strong ground-motion recordings available for different low- and mid-rise building typologies. A total of 9 buildings and 19 earthquake recordings were analyzed. DARR reproduces the shaking at the building’s top, and estimates the peak structural relative displacement or average interstory drift. Results show that the method works well for the considered building types and ground-motion levels for the estimation of relative and total displacements using first-order assessments. Comparison with the previously defined thresholds allows the estimation of expected damage. Our results (i.e., no damage for most buildings and events) are consistent with the absence of damaging events in northeastern Italy in the studied period (2019–2021). For a school building in central Italy, which was heavily damaged by the 2016 Central Italian sequence, DARR correctly predicted this fact.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3