Deep Learning–Based Denoising Improves Receiver Function Imaging Using Dense Short-Period Teleseismic Data

Author:

Feng Mingye1234ORCID,Chen Ling12,Wei Shengji34ORCID,Muksin Umar5,Simanjuntak Andrean V. H.56ORCID,Chen Yukuan3ORCID,Gong Chang7

Affiliation:

1. 1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

2. 2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China

3. 3Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore

4. 4Asian School of the Environment, Nanyang Technological University, Singapore, Singapore

5. 5Tsunami and Disaster Mitigation Research Center (TDMRC), Universitas Syiah Kuala, Banda Aceh, Indonesia

6. 6Agency for Meteorology, Climatology, and Geophysics, Jakarta, Indonesia

7. 7Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China

Abstract

Abstract Receiver function (RF) imaging using seismic data from dense short-period arrays has gained increasing importance in recent years in investigating fine-scale structures of the crust and uppermost mantle. A crucial step in such studies is to remove the instrument response (IR) to enhance teleseismic signals at ∼0.01 to 5 Hz, thereby simulating broadband records. However, this procedure also amplifies noise within the same frequency band. For weak signals, distinguishing them from noise is often challenging and in some cases is even impossible with traditional denoising methods such as filtering. To address this challenge, we develop a new convolutional neural network model, NodalWaden, using decades of high-quality global broadband teleseismic body waves for training. The broadband data exhibit the characteristics we target to achieve by removing the IR from the short-period records. The applicability of NodalWaden is justified by denoising the three-component short-period records of more than 18 months from 155 nodes deployed in northern Sumatra. We find that NodalWaden substantially improves the signal-to-noise ratio (SNR), upgrading ∼50% of the teleseismic data from the “very-low-SNR” (∼1) to “very-high-SNR” (>10) categories. RFs calculated from the denoised dataset show better separation of merged phases and noticeable enhancement of weak signals, resulting in improvement in the quality of structure imaging. In particular, a positive phase is consistently detected at ~2 s throughout the dataset and interpreted as the Conrad discontinuity, which is unresolvable in the original RFs. This denoising technique would be particularly useful for short-duration (e.g., one month) deployment with limited teleseismic data, both from the past and in the future.

Publisher

Seismological Society of America (SSA)

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3