A Seismic Nodal Deployment to Understand Magmatic Structure in the Vicinity of the Pāhala Earthquake Swarm

Author:

Janiszewski Helen1ORCID,Bennington Ninfa2ORCID,Wight Jade1

Affiliation:

1. 1Department of Earth Sciences, University of Hawai’i at MāGnoa, Honolulu, Hawai‘i, U.S.A.

2. 2U. S. Geological Survey, Hawaiian Volcano Observatory, Hilo, Hawai‘i, U.S.A.

Abstract

Abstract In Summer–Fall 2022, 80 three-component SmartSolo IGU-BD3C-5 nodal seismometers were deployed surrounding the Pāhala seismic swarm on the Island of Hawai‘i, with the goal of improving seismicity catalogs and seismic velocity images of the crust and upper mantle in this region. The Pāhala swarm, located south of Mauna Loa and Kīlauea, has been the site of a multiyear sustained swarm of seismicity at the depths of ∼25–40 km, with order of magnitude increases in rate in 2015, and then again in 2019. This seismicity is possibly related to the input of magma from the mantle plume below, which may then be subsequently transported to volcanic edifices. However, these processes remain enigmatic, in part due to a lack of precise earthquake locations and seismic velocity models in this region. Here, we provide an overview of the deployment, an assessment of the quality of the collected data, and discuss the viability of the data set for local earthquake relocation, tomography, and teleseismic receiver functions. Through comparisons with proximal permanent broadband and short-period instruments, we find that the nodes produce high-quality data, particularly at periods shorter than 5 s, although we find, document, and correct discrepancies with the gain and polarities of the instruments. We successfully record signals from teleseismic earthquakes, even at periods longer than 5 s (the corner of the flat response of the nodes). We also record local earthquakes, including details related to source characteristics. This indicates that the data are likely to prove useful for investigations using both local and teleseismic earthquake signals to better understand the connections between the deep and shallow magmatic systems of Hawai‘i. Although this deployment provides a snapshot in time, its success may provide a useful benchmark for future studies as the volcanic systems of Hawai‘i continue to evolve in the future.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3