Asymmetric Bilateral Rupture of the 2021 Mw 7.4 Maduo Earthquake in China and Association with Seismogenic Fault Structures

Author:

Liu Wei1ORCID,Zeng Lingci2ORCID,Yao Huajian234,Yu Zhenjiang15ORCID,Chen Xiaofei15ORCID

Affiliation:

1. 1Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen, China

2. 2Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

3. 3Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng, China

4. 4CAS Center for Excellence in Comparative Planetology, Hefei, China

5. 5Guangdong Provincial Key Laboratory of Geophysical High-Resolution Imaging Technology, Southern University of Science and Technology, Shenzhen, China

Abstract

Abstract Different frequency contents of seismic waveforms may reveal different earthquake rupture features, which could shed light on understanding the seismic rupture and its association with seismogenic fault structures. Here, we applied finite-fault inversions and compressive-sensing backprojection analyses to study the rupture process of the 2021 Mw 7.4 Maduo, China earthquake, using seismic data in different frequency ranges. Our results unveil an asymmetric west-to-east bilateral rupture of this earthquake, that is, the westward rupture hosted less coseismic slip and less energy radiations than the eastward one. The westward rupture may encounter a structural complexity, suppressing the propagation of the seismic rupture and radiating higher-frequency energy. Instead, the eastward rupture passed across a relatively continuous fault geometry and possibly reached super-shear velocities locally. The fault bifurcation at the eastern end may arrest the seismic rupture and facilitate its termination. We infer that asymmetric rupture features of the 2021 Maduo earthquake are associated with complex fault structures resulting from deformations caused by the northeastward growth of the Tibetan plateau.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3