Shallow Subsurface Imaging Using Challenging Urban DAS Data

Author:

Smolinski Krystyna T.1ORCID,Bowden Daniel C.1ORCID,Paitz Patrick2ORCID,Kugler Felix3,Fichtner Andreas1ORCID

Affiliation:

1. 1ETH Zürich, Institut für Geophysik, Zürich, Switzerland

2. 2Swiss Federal Research Institute WSL, Birmensdorf, Switzerland

3. 3SWITCH, Zürich, Switzerland

Abstract

Abstract We present a workflow for producing shallow subsurface velocity models from passive urban distributed acoustic sensing (DAS) data. This method is demonstrated using a dataset collected in Bern, Switzerland, using in situ telecommunications fiber. We compute noise correlations to extract Rayleigh-wave dispersion curves, which we then use to produce a series of overlapping 1D velocity models of the top tens of meters of the subsurface. This dataset represents a realistic “best-case” scenario when using real urban telecommunications fiber—the cable layout is linear, its location is well known, and coupling is broadly sufficient. Nevertheless, a number of nontrivial complexities still exist in such a dataset and are highlighted in this study. Rather than prescribing one optimal workflow for all similar experiments, we focus on the steps taken and decisions made that led to a velocity model in this setting. It is our hope that such a text will be useful to future researchers exploring DAS interferometry and may provide some guidance on overcoming the difficulties and imperfections of working with such datasets.

Publisher

Seismological Society of America (SSA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3