Improving Out of Network Earthquake Locations Using Prior Seismicity for Use in Earthquake Early Warning

Author:

Williamson Amy1,Lux Angela1ORCID,Allen Richard1ORCID

Affiliation:

1. 1Berkeley Seismological Laboratory, University of California, Berkeley, Berkeley, California, U.S.A.

Abstract

ABSTRACTTimely alerts sent through earthquake early warning (EEW) programs allow those alerted to take protective actions to mitigate their risk from potentially damaging shaking. Over the past few years, ShakeAlert, the EEW program focused on the west coast of the contiguous United States, has grown, alerting communities within California, Oregon, and Washington about earthquakes where damaging shaking is expected. ShakeAlert uses a set of algorithms including the point-source algorithm, earthquake point-source integrated code (EPIC), to determine the location, magnitude, and origin time of potential earthquakes. Although EPIC produces low-latency and low error solutions for many events originating within the seismic network on land, numerous recent small earthquakes rupturing offshore of northern California have EPIC location solutions with high error (>50 km compared to USGS locations). Because most events are occurring offshore, there is a limited number of stations that can trigger and contribute information in a timely manner for use in EEW. To better constrain location solutions in this region, we propose to include information about contemporary past seismicity into EPIC’s grid-search algorithm through a Bayesian framework. This prior information layer downweights high error locations where EPIC’s proposed event location coincides with an area of low prior seismicity in preference for locations with a similar level of data fit that also have higher past seismicity. This addition to EPIC lowers the mean location error offshore northern California from 58 to 14 km.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3