Anomaly Detection in Seismic Data–Metadata Using Simple Machine-Learning Models

Author:

Zaccarelli Riccardo1ORCID,Bindi Dino1ORCID,Strollo Angelo1ORCID

Affiliation:

1. German Research Centre for Geosciences GFZ, Potsdam, Germany

Abstract

Abstract In modern seismological analysis, it is not unusual to process huge amounts of data, as illustrated by two case studies exemplified in this work, both assessing the quality of several millions of segments selected for computing local and energy magnitudes. In this scenario, quality control tools to filter, discard, or rank data are of extreme importance and should ideally be simple, fast, and generalizable. Using machine-learning tools, we present here a simple and efficient model based on the isolation forest algorithm for detecting amplitude anomalies on any seismic waveform segment, with no restriction on the segment record content (earthquake vs. noise) and no additional requirements than the segment metadata. By considering a simple feature space composed of amplitudes of each segment’s power spectral density (PSD) evaluated at selected periods suitable for both local and teleseismic applications, feature selection revealed that one single feature, the PSD at 5 s, is sufficient to achieve the best predicting performances. The evaluation results report average precision scores around 0.97, and maximum F1 scores above 0.9, both remarkable results with respect to the simplicity of the approach used and the generality of the problem tackled. The trained model producing the best evaluation results is the backbone of a publicly available software, which computes an amplitude anomaly score in [0, 1] for any given seismic waveform, and can be beneficial in several applications such as discarding anomalies from data sets, ideally in a preprocessing stage, and detecting potential metadata problems on data center side. When applied to our two case studies, the software was revealed to be fast and effective, and the computed anomaly scores allow additional flexibility in addition to the proven wide-range applicability.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3