Tests of Remote Dynamic Aftershock Triggering by Small Mainshocks Using Taiwan’s Earthquake Catalog

Author:

Peng Wei12,Toda Shinji3

Affiliation:

1. Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan

2. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

3. International Research Institute of Disaster Science (IRIDeS), Tohoku University, Sendai, Japan

Abstract

Abstract To understand earthquake interaction and forecast time-dependent seismic hazard, it is essential to determine which static or dynamic stress change due to a mainshock plays a major role in triggering its aftershocks and subsequent mainshocks. Using small mainshocks (2≤M<3) and their aftershocks, Felzer and Brodsky (2006) argued that mainshock induced dynamic stress change is responsible for earthquake triggering in a form of power-law decay within 50 km. Richards-Dinger et al. (2010), however, studied the foreshock decay and claimed that mainshock had no effect at distances outside its static stress triggering range, which required an alternative explanation. We tested these hypotheses using Taiwan’s earthquake catalog by taking advantage of its lack of large events and the absence of active volcano and associated significant seismic swarm. In examining earthquakes occurring in 1994–2010, following Felzer and Brodsky’s method, we found a linear aftershock density with a power-law decay of −1.12±0.38 that is very similar to the one seen in Felzer and Brodsky (2006). None of the mainshock–aftershock pairs were associated with an M 7 rupture event or M 6 event. We further demonstrated that the density decay in a short time period is more likely a randomized behavior than mainshock–aftershock triggering. These pairs were located mostly in high geothermal gradient areas, which are probably triggered by a small-scale aseismic process.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3