The Normal-Faulting 2020 Mw 5.8 Lone Pine, Eastern California, Earthquake Sequence

Author:

Hauksson Egill1,Olson Brian2,Grant Alex3,Andrews Jennifer R.1,Chung Angela I.4,Hough Susan E.5,Kanamori Hiroo1,McBride Sara K.3,Michael Andrew J.3,Page Morgan5,Ross Zachary E.1,Smith Deborah E.5,Valkaniotis Sotiris6

Affiliation:

1. Seismological Laboratory, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, U.S.A.

2. California Geological Survey, Los Angeles, California, U.S.A.

3. Earthquake Science Center, U.S. Geological Survey, Moffett Field, California, U.S.A.

4. Berkeley Seismological Laboratory, University of California, Berkeley, Berkeley, California, U.S.A.

5. Earthquake Science Center, U.S. Geological Survey, Pasadena, California, U.S.A.

6. Koronidos 9, Trikala, Greece

Abstract

Abstract The 2020 Mw 5.8 Lone Pine earthquake, the largest earthquake on the Owens Valley fault zone, eastern California, since the nineteenth century, ruptured an extensional stepover in that fault. Owens Valley separates two normal-faulting regimes, the western margin of the Great basin and the eastern margin of the Sierra Nevada, forming a complex seismotectonic zone, and a possible nascent plate boundary. Foreshocks began on 22 June 2020; the largest Mw 4.7 foreshock occurred at ∼6  km depth, with primarily normal faulting, followed ∼40  hr later on 24 June 2020 by an Mw 5.8 mainshock at ∼7  km depth. The sequence caused overlapping ruptures across a ∼0.25  km2 area, extended to ∼4  km2, and culminated in an ∼25  km2 aftershock area. The mainshock was predominantly normal faulting, with a strike of 330° (north-northwest), dipping 60°–65° to the east-northeast. Comparison of background seismicity and 2020 Ridgecrest aftershock rates showed that this earthquake was not an aftershock of the Ridgecrest mainshock. The Mw–mB relationship and distribution of ground motions suggest typical rupture speeds. The aftershocks form a north-northwest-trending, north-northeast-dipping, 5 km long distribution, consistent with the rupture length estimated from analysis of regional waveform data. No surface rupture was reported along the 1872 scarps from the 2020 Mw 5.8 mainshock, although, the dipping rupture zone of the Mw 5.8 mainshock projects to the surface in the general area. The mainshock seismic energy triggered rockfalls at high elevations (>3.0  km) in the Sierra Nevada, at distances of 8–20 km, and liquefaction along the western edge of Owens Lake. Because there were ∼30% fewer aftershocks than for an average southern California sequence, the aftershock forecast probabilities were lower than expected. ShakeAlert, the earthquake early warning system, provided first warning within 9.9 s, as well as subsequent updates.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3