Network-Based Earthquake Magnitude Determination via Deep Learning

Author:

Kuang Wenhuan12,Yuan Congcong3,Zhang Jie1

Affiliation:

1. Department of Geophysics, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China

2. Department of Geophysics, Stanford University, Stanford, California, U.S.A.

3. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, U.S.A.

Abstract

Abstract The stability and robustness of determining earthquake magnitude are of great significance in earthquake monitoring and seismic hazard assessment. The routine workflow of determining earthquake local magnitude, such as the widely used Richter magnitude, may result in an unreliable measurement of earthquake magnitude because it relies on individual amplitude measurement of a single station, which is prone to be influenced by natural impulsive noise or anthropogenic noise. In this study, we present an automated estimation of earthquake magnitude by applying a deep-learning algorithm named magnitude neural network (MagNet) based on the full-waveform recordings from a network of seismic stations at China seismic experimental site (CSES). The MagNet consists of a compression component that extracts the global features of waveform data and an expansion component that yields a Gaussian probability distribution representing the magnitude estimation. The MagNet is trained with an augmented data set, which includes 21,700 training samples with evenly distributed magnitudes. From the prediction results on the test data set, the mean errors and standard deviations are −0.017 and 0.21, respectively, for 600 moderate earthquakes with magnitudes ranging from 3 to 5.9, and −0.011 and 0.14, respectively, for 70 small earthquakes with magnitudes ranging from 2.3 to 3.5. However, it remains challenging for large earthquakes (magnitude>6.5), due to the lack of sufficient historical large earthquakes as training data. In addition, testing results show that the new method is capable of minimizing the impact of abnormal noises in the data. These results demonstrate the validity and merits of the proposed deep-learning method in predicting earthquake magnitude automatically.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3