Temporal Variation in Cultural Seismic Noise and Noise Correlation Functions during COVID-19 Lockdown in Canada

Author:

Kuponiyi Ayodeji Paul12ORCID,Kao Honn12ORCID

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

2. Pacific Geoscience Centre, Geological Survey of Canada, Sidney, British Columbia, Canada

Abstract

Abstract The COVID-19 pandemic of 2020 led to a widespread lockdown that restricted human activities, particularly land, air, and maritime traffic. The “quietness” on land and ocean that followed presents an opportunity to measure an unprecedented reduction in human-related seismic activities and study its effect on the short-period range of ambient noise cross-correlation functions (NCFs). We document the variations in seismic power levels and signal quality of short-period NCFs measured by four seismographs located near Canadian cities across the pandemic-defined timeline. Significant drops in seismic power levels are observed at all the locations around mid-March. These drops coincide with lockdown announcements by the various Canadian provinces where the stations are located. Mean seismic power reductions of ∼24% and ∼17% are observed near Montreal and Ottawa, respectively, in eastern Canada. Similar reductions of ∼27% and 17% are recorded in western Canada near Victoria and Sidney, respectively. None of the locations show full recovery in seismic power back to the pre-lockdown levels by the end of June, when the provinces moved into gradual reopening. The overall levels of seismic noise during lockdown are a factor of 5–10 lower at our study locations in western Canada, relative to the east. Signal quality of NCF measured in the secondary microseism frequency band for the station pair in western Canada is maximum before lockdown (late February–early March), minimum during lockdown (mid–late March), and increased to intermediate levels in the reopening phase (late May). A similar pattern is observed for the signal quality of the eastern Canada station pair, except for a jump in levels at similar periods during the lockdown phase. The signal quality of NCF within the secondary microseism band is further shown to be the lowest for the western Canada station pair during the 2020 lockdown phase, when compared with similar time windows in 2018 and 2019.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3