Estimations of Sensor Misorientation for Broadband Seismic Stations in and around Africa

Author:

Ojo Adebayo Oluwaseun12,Zhao Li1,Wang Xin3

Affiliation:

1. School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China, ojo@pku.edu.cnlizhaopku@pku.edu.cn

2. Also at Department of Geosciences, Faculty of Science, University of Lagos, University Road, Akoka‐Yaba, 100213 Lagos, Lagos State, Nigeria.

3. Seismological Laboratory, California Institute of Technology, 1200 East California Boulevard, MS 252‐21, Pasadena, California 91125‐2100 U.S.A., xinwang@caltech.edu

Abstract

ABSTRACT To ensure the accuracy of future seismological studies using horizontal‐component data recorded by broadband seismic stations in Africa and environs, we investigate the sensor orientation of 1075 stations belonging to 41 seismic networks deployed in and around the African continent in the past three decades. We applied three independent waveform‐based orientation estimation methods that involve the measurement of P‐wave particle motion based on the principal component analysis, minimizing the P‐wave energy on the transverse component of motion, and measuring intermediate‐period Rayleigh‐wave arrival angles from teleseismic earthquakes. We found that 34.3%–43.5% of the stations are well oriented within 3°, 40%–48.2% have sensor misorientation values between 3° and 10°, whereas 16.5%–18% of the stations are misaligned by more than 10°, most likely true sensor misorientation. The fairly high correlation coefficients (0.71–0.93) and very small mean (−0.01°–0.06°) and median (−0.04°–0.3°) differences suggest a high consistency among the estimates from the three methods. Likewise, the comparison of our results with reported orientations in the metadata at 33 stations demonstrates the robustness of the results obtained in this study. Likewise, the increase in the cross‐correlation coefficients and reduced time shifts between the Rayleigh‐wave signals on the vertical and Hilbert‐transformed radial components when the sensor misorientation angles are corrected show the importance of this study. An investigation of the time dependence of the estimated misorientation angles over the validation period reveals that the sensor orientation remained fairly constant for most stations included in the study. The nearly 180° sensor misorientation angles obtained at some stations led to the suspicion of possible polarity reversal of the seismometer components and/or channel mislabeling that was confirmed with a network manager for two of the seismic stations. Result of this study serves as a reference for future data users and a reminder to seismic network managers to decrease the number of errors that may lead to misorientations in future deployments.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3