Tracking Local Sea Ice Extent in the Beaufort Sea Using Distributed Acoustic Sensing and Machine Learning

Author:

Peña Castro Andres Felipe1ORCID,Schmandt Brandon1ORCID,Baker Michael G.2ORCID,Abbott Robert E.2ORCID

Affiliation:

1. 1Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, U.S.A.

2. 2Sandia National Laboratories, Albuquerque, New Mexico, U.S.A.

Abstract

Abstract Monitoring sea ice extent is critical to understand long-term trends in climate change. Here, we show that ambient noise recorded by fiber-optic sensing technology deployed in an Arctic shallow marine seafloor environment can track sea ice extent. We use a 37.4 km long section of fiber-optic cable deployed offshore of Oliktok Point, Alaska. Data are analyzed for two weeks: one in July 2021 and another in November 2021, when there is incomplete and evolving sea ice coverage. We apply different Machine Learning algorithms to identify types of ambient seismic noise in frequency–time scalogram images. We find evidence for two dominant noise types related to excitation of oceanic gravity waves in open water and the presence of sea ice with sufficient strength to suppress wave action. Comparison of the Distributed Acoustic Sensing (DAS) noise clustering results with satellite-based observations indicates that seafloor DAS can complement sea ice constraints from satellite imagery by locally increasing spatial and temporal resolution and tracking for which ice coverage is sufficient to diminish ocean waves.

Publisher

Seismological Society of America (SSA)

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3