Are Regionally Calibrated Seismicity Models More Informative than Global Models? Insights from California, New Zealand, and Italy

Author:

Bayona José A.1ORCID,Savran William H.23ORCID,Iturrieta Pablo4ORCID,Gerstenberger Matthew C.5,Graham Kenny M.5ORCID,Marzocchi Warner6ORCID,Schorlemmer Danijel4ORCID,Werner Maximilian J.1ORCID

Affiliation:

1. 1School of Earth Sciences, University of Bristol, Bristol, United Kingdom

2. 2Southern California Earthquake Center, University of Southern California, Los Angeles, California, U.S.A.

3. 3Now at, Nevada Seismological Laboratory, University of Nevada, Reno, Nevada, U.S.A.

4. 4GFZ German Research Centre for Geosciences, Potsdam, Germany

5. 5GNS Science, Lower Hutt, New Zealand

6. 6University of Naples Federico II, Naples, Italy

Abstract

Abstract Earthquake forecasting models express hypotheses about seismogenesis that underpin global and regional probabilistic seismic hazard assessments (PSHAs). An implicit assumption is that the comparatively higher spatiotemporal resolution datasets from which regional models are generated lead to more informative seismicity forecasts than global models, which are however calibrated on greater datasets of large earthquakes. Here, we prospectively assess the ability of the Global Earthquake Activity Rate (GEAR1) model and 19 time-independent regional models to forecast M 4.95+ seismicity in California, New Zealand, and Italy from 2014 through 2021, using metrics developed by the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results show that regional models that adaptively smooth small earthquake locations perform best in California and Italy during the evaluation period; however, GEAR1, based on global seismicity and geodesy datasets, performs surprisingly well across all testing regions, ranking first in New Zealand, second in California, and third in Italy. Furthermore, the performance of the models is highly sensitive to spatial smoothing, and the optimal smoothing likely depends on the regional tectonic setting. Acknowledging the limited prospective test data, these results provide preliminary support for using GEAR1 as a global reference M 4.95+ seismicity model that could inform eight-year regional and global PSHAs.

Publisher

Seismological Society of America (SSA)

Subject

General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3