Mapping of crack edges by seismic methods

Author:

Achenbach J. D.1,Norris A.1,Viswanathan K.1

Affiliation:

1. Department of Civil Engineering Northwestern University Evanston, Illinois 60201

Abstract

abstract The inverse problem of diffraction of elastic waves by the edge of a large crack has been investigated on the basis of elastodynamic ray theory and the geometrical theory of diffraction. Two methods are discussed for the mapping of the edge of a crack-like flaw in an elastic medium. The methods require as input data the arrival times of diffracted ultrasonic signals. The first method maps flash points on the crack edge by a process of triangulation with the source and receiver as given vertices of the triangle. By the use of arrival times at neighboring positions of the source and/or the receiver, the directions of signal propagation, which determine the triangle, can be computed. This inverse mapping is global in the sense that no a priori knowledge of the location of the crack edge is necessary. The second method is a local edge mapping which determines planes relative to a known point close to the crack edge. Each plane contains a flash point. The envelope of the planes maps an approximation to the crack edge. The errors due to inaccuracies in the input data and in the computational procedure have been illustrated by specific examples.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Results on Crack Inversion;Review of Progress in Quantitative Nondestructive Evaluation;1984

2. Further Results for Crack-Edge Mappings by Ray Methods;Review of Progress in Quantitative Nondestructive Evaluation;1984

3. Synthetics and theoretical seismology;Reviews of Geophysics;1983

4. Crack Mapping by Ray Methods;Review of Progress in Quantitative Nondestructive Evaluation;1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3