Acoustic Overpressure Signals from Fully Confined and Vented Chemical Explosions

Author:

Stroujkova Anastasia1,Leidig Mark1,Ferris Aaron1,Salerno Jeremy1,Lewkowicz James1

Affiliation:

1. Applied Research Associates, Inc., Weston Geophysical Group, Lexington, Massachusetts, U.S.A.

Abstract

ABSTRACT We analyzed acoustic overpressure signals generated by overburied underground chemical explosions conducted in hard rock in New Hampshire in 2018. The explosions had comparable yields between 62.8 and 82.6 kg trinitrotoluene equivalent and were buried at depths between 12 and 13 m. Two explosions resulted in crater formation and gas venting, whereas the remaining explosions were fully confined and did not result in ground failure. Acoustic signals from the confined explosions were produced by the ground shock near ground zero. Acoustic signals from cratered explosions represent a combination of a ground shock signal and a time-delayed high-amplitude signal generated by gas venting. The cratering and venting occurred during the free-fall phase observed on the near-source accelerograms. We argue that the main reason for the cratering in this experiment is the low-rock porosity, preventing postexplosion pressure relief in the cavity and promoting long fracture formation during the unloading phase and subsequent containment failure. The ground-shock-induced signals were modeled using the Rayleigh integral of the near-source ground acceleration. The equations of nonlinear acoustics were used to model the observed gas venting signals produced by the gas flow from the explosion cavity to the surface. By comparing the near-source signals produced by venting to theoretical signals from surface blasts we have shown that the venting signals have significantly lower peak pressures and longer signal durations compared to surface blasts of the equivalent impulse. The observed amplitudes of the acoustic signals produced by the venting are significantly higher than the ground-shock related signals expected from overburied explosions. This is important to consider because higher acoustic amplitudes may potentially lead to errors in yield estimation.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical Modeling of Air-Blast Suppression as a Function of Explosive-Charge Burial Depth;Bulletin of the Seismological Society of America;2023-03-03

2. Using Machine Learning for Explosion Yield Estimation;Bulletin of the Seismological Society of America;2022-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3