Affiliation:
1. VTT Technical Research Centre of Finland Ltd., Espoo, Finland
2. Institute of Seismology, University of Helsinki, Helsinki, Finland
Abstract
ABSTRACT
We propose a ground-motion prediction equation (GMPE) for probabilistic seismic hazard analysis of nuclear installations in Finland. We collected and archived the acceleration recordings of 77 earthquakes from seismic stations on very hard rock (VHR, i.e., the shear-wave velocity in the upper 30 m of the geological profile=2800 m/s according to the definition used in the nuclear industry) in Finland and Sweden since 2006 and computed the corresponding response spectra important for engineering evaluation. We augmented the narrow magnitude range of the local data by a subset of VHR recordings of 33 earthquakes from the Next Generation Attenuation for Central and Eastern North America (CENA) (NGA-East) database, mainly from eastern Canada. We adapted the backbone curves of the G16 equation proposed by Graizer (2016) for CENA. After the calibration, we evaluated the accuracy of the median prediction and the random error. We conclude that the GMPE developed can be used for predicting ground motions in Fennoscandia. Because of compatibility with the original G16 backbone curve and comparisons with the NGA-East GMPEs, we estimate that the formulation proposed is valid on VHR over the range of 2≤moment magnitude≤7.0 and 0≤ rupture distance ≤300 km, the depth range over 1.5–37 km, and frequencies between 1 and 100 Hz. The median of the composite prediction of the GMPE proposed was reasonable. The standard deviation of the prediction error (σ) was over the range of 0.73–0.86, in ln spectral acceleration units, for the relevant spectral frequencies. This is somewhat lower than the G16 σ, indicating lower aleatory variability. The new Fenno-G16 GMPE is applicable over a wider range of magnitudes than the two older GMPEs available in Finland and fits the data better, especially for peak ground acceleration and 25 Hz.
Publisher
Seismological Society of America (SSA)
Subject
Geochemistry and Petrology,Geophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献