The Multiscale Structure of the Longmen Shan Central Fault Zone from Local and Teleseismic Data Recorded by Short-Period Dense Arrays

Author:

Huang Yafen12,Li Hongyi12,Liu Xin3,Zhang Yuting1,Liu Min1,Guan Yong4,Su Jinrong4

Affiliation:

1. School of Geophysics and Information Technology, China University of Geosciences, Beijing, China

2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China

3. Department of Geophysics, Stanford University, Stanford, California, U.S.A.

4. Sichuan Earthquake Administration, Chengdu, China

Abstract

ABSTRACTThe Longmen Shan fault zone (FZ), which consists of the back-range, the central, and the front-range faults, acts as the boundary between the Sichuan basin and eastern Tibet. In this study, local and teleseismic waveforms recorded by a 2D small aperture seismic array (176 temporary short-period seismometers) deployed by China University of Geosciences (Beijing) from 22 October to 20 November 2017 and a dense linear seismic array of 16 stations deployed by Geophysical Exploration Center, China Earthquake Administration during July 2008 are used to study the FZ structure by analyzing FZ-trapped waves (FZTWs), the radial-to-vertical amplitude ratio, and travel-time delays. Based on power density spectra analysis, FZTWs from local events with larger amplitudes and longer wavetrains are clearly observed at stations 6002–6003, 6013–6025, and W025–W032. The dispersion measured from trapped waves is quite weak. The near-surface shear velocity structure estimated from the radial-to-vertical amplitude ratios of local initial P waves shows a low-velocity zone around the surface rupture trace. The slight time delay of direct P waves examined from local and teleseismic events indicates a relatively shallow slow structure beneath the arrays. Through the comprehensive analysis of the central FZ, our results suggest a shallow low-velocity zone with a width of ∼150–160  m along the surface rupture trace. Moreover, our P-wave receiver functions reveal that the Moho depth beneath the Longmen Shan FZ is approximately 45 km, and receiver functions at stations located within the surface rupture zone show more complicated waveforms than those off the surface rupture.

Publisher

Seismological Society of America (SSA)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3