Co- and Early Postseismic Deformation Due to the 2019 Ridgecrest Earthquake Sequence Constrained by Sentinel-1 and COSMO-SkyMed SAR Data

Author:

Wang Kang1,Bürgmann Roland1

Affiliation:

1. Department of Earth and Planetary Sciences, University of California, Berkeley, California, U.S.A.

Abstract

Abstract The 2019 Ridgecrest earthquake sequence ruptured a series of conjugate faults in the broad eastern California shear zone, north of the Mojave Desert in southern California. The average spacing between Global Navigation Satellite System (GNSS) stations around the earthquakes is 20–30 km, insufficient to constrain the rupture details of the earthquakes. Here, we use Sentinel-1 and COSMO-SkyMed (CSK) Synthetic Aperture Radar data to derive the high-resolution coseismic and early postseismic surface deformation related to the Ridgecrest earthquake sequence. Line of sight (LoS) Interferometric Synthetic Aperture Radar displacements derived from both Sentinel-1 and CSK data are in good agreement with GNSS measurements. The maximum coseismic displacement occurs near the Mw 7.1 epicenter, with an estimated fault offset of ∼4.5  m on a northwest-striking rupture. Pixel tracking analysis of CSK data also reveals a sharp surface offset of ∼1 m on a second northwest-striking fault strand on which the Mw 6.4 foreshock likely nucleated, which is located ∼2–3  km east of the major rupture. The lack of clear surface displacement across this fault segment during the Mw 6.4 event suggests this fault might have ruptured twice, with more pronounced and shallow slip during the Mw 7.1 mainshock. Both Sentinel-1 and CSK data reveal clear postseismic deformation following the 2019 Ridgecrest earthquake sequence. Cumulative postseismic deformation near the Mw 7.1 epicenter ∼2 months after the mainshock reaches ∼5  cm along the satellites’ LoSs. The observed postseismic deformation near the fault is indicative of both afterslip and poroelastic rebound. We provide data derived in this study in various data formats, which will be useful for the broad community studying this earthquake sequence.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3